
On Modern Deep Learning and Variational Inference

Yarin Gal
University of Cambridge

{yg279,zg201}@cam.ac.uk

Zoubin Ghahramani

Abstract

Bayesian modelling and variational inference are rooted in Bayesian statistics, and
easily benefit from the vast literature in the field. In contrast, deep learning lacks a
solid mathematical grounding. Instead, empirical developments in deep learning
are often justified by metaphors, evading the unexplained principles at play. It is
perhaps astonishing then that most modern deep learning models can be cast as
performing approximate variational inference in a Bayesian setting. This math-
ematically grounded result, studied in Gal and Ghahramani [1] for deep neural
networks (NNs), is extended here to arbitrary deep learning models. The implica-
tions of this statement are profound: we can use the rich Bayesian statistics liter-
ature with deep learning models, explain away many of the curiosities with these,
combine results from deep learning into Bayesian modelling, and much more. We
demonstrate the practical impact of the framework with image classification by
combining Bayesian and deep learning techniques, obtaining new state-of-the-art
results, and survey open problems to research. These stand at the forefront of a
new and exciting field combining modern deep learning and Bayesian techniques.

1 Introduction

Bayesian modelling and deep learning are fairly antipodal to each other: one pushed forward by
theoreticians, while the other by practitioners. Bayesian modelling is based on the vast theory of
Bayesian statistics, in which we aim to capture the processes assumed to have generated our data.
This often results in interpretable models that can explain the data well, at least when we can perform
inference in the models. Deep learning on the other hand is mostly driven by pragmatic develop-
ments of tractable models, and has fundamentally affected the way machine learning is used in
real-world applications. But unlike Bayesian modelling, deep learning lacks a solid mathematical
formalism, and many developments are void of mathematical justification. These are often explained
by various metaphors which do not shed much light on the reasons models are built in certain ways.

Consider the following simple example. We are given a dataset of pairs of inputs x and y, with
corresponding outputs z. When should a neural network (NN) be of the form z = W′σ(W1x +
W2y) and when should it be of the form z = W′

1σ(W1x) + W′
2σ(W2y)? here the W’s are

weight matrices and σ is an element-wise non-linear function. In current research the problem of
model architecture selection is often solved empirically by a process of trial-and-error.

A much more interesting example is that of stochastic regularisation techniques such as dropout
[2], DropConnect [3], Multiplicative Gaussian Noise [4], and many others. In dropout for example
the network’s units would be multiplied by Bernoulli random variables. This slows down training
but circumvents over-fitting and improves model accuracy considerably. Such techniques have had
tremendous success in deep learning and are used in almost all modern models [4]. But why do these
work so well? In [4] dropout is suggested to work well following a sexual reproduction metaphor.
But then why would multiplying a network’s units by a Gaussian distribution N (1, 1) instead of
Bernoulli random variables result in the same model performance?1

1Papers such as [5, 6] attempt to explain dropout as performing stochastic gradient descent on a regularised
error function, or as an L2 regulariser applied after scaling the features by some estimate; these do not explain
the multitude of other stochastic regularisation techniques though.

1

Many other questions are often given metaphorical answers such as these. Why is dropout not used
with convolutions in convolutional networks (convnets)? Convnets are popular models for image
processing, but in these dropout is used with the deep layers alone, and not with the convolution
layers. Some justify this with the claim that there is less co-adaptation in convolution layers, thus
dropout is not needed. Other explanations simply state that performing dropout in convolutions
results in bad model performance. These arguments do not give any insights into when the technique
should be used and how.

Perhaps surprisingly, we can answer all the questions above using Bayesian statistics and variational
inference. Gal and Ghahramani [1] have recently shown that dropout in deep NNs can be cast as
a variational approximation to a well known Bayesian model – the deep Gaussian process (GP).
Extending on the work we show here that stochastic regularisation techniques in arbitrary neural
models can be seen as approximate variational inference in Bayesian NNs. The implications of this
result are far-reaching. Since most modern deep learning tools make use of some form of stochastic
regularisation, this means that most of modern deep learning performs approximate Bayesian in-
ference, capturing the stochastic processes underlying the observed data. This means that we can
use the vast literature of Bayesian statistics with deep learning, explaining many deep learning phe-
nomena with a mathematically rigorous theory, and extend existing tools in a principled way. We
can use variational inference in deep learning, combining deep learning tools and Bayesian models
in a compositional fashion. We can even assess model uncertainty in deep learning [7] and build
interpretable deep learning tools.

In this paper we answer the questions brought above and propose exciting future directions to re-
search. We first survey the results of [1] quickly and then extend these to approximate variational
inference in Bayesian NNs, answering the first few questions stated above. Demonstrating the the-
ory’s impact on applied machine learning, we combine convolutional neural networks with Bayesian
techniques and give new state-of-the-art results in image classification. This answers the last few
open questions raised above, explaining how dropout should be used with convolution layers follow-
ing our mathematically rigorous developments. The framework lays the foundations to a new and
exciting field of study combining deep learning and Bayesian techniques. We finish by surveying
open problems to research which would stand at its core.

2 Stochastic Regularisation Techniques in Deep Networks and the Gaussian
Process

We start by reviewing the main results of [1], relating stochastic regularisation techniques (such as
dropout) in deep networks to approximate inference in the Gaussian process. In the process we will
be able to shed light on the first question raised above: model architecture selection. We will extend
this result in the next section by tying stochastic regularisation in arbitrary network structures to
approximate variational inference in Bayesian neural networks instead of Gaussian processes.

Let ŷ be the output of a NN with L layers and a loss function E(·, ·) such as the softmax loss
or the Euclidean loss (squared loss). We denote by Wi the NN’s weight matrices of dimensions
Ki × Ki−1, and by bi the bias vectors of dimensions Ki for each layer i = 1, ..., L. We denote
by yi the observed output corresponding to input xi for 1 ≤ i ≤ N data points, and the input and
output sets as X,Y. During NN optimisation a regularisation term is often added. We often use
L2 regularisation weighted by some weight decay λ, resulting in a minimisation objective (often
referred to as cost),

Ldropout :=
1

N

N∑
i=1

E(yi, ŷi) + λ

L∑
i=1

(
||Wi||22 + ||bi||22

)
. (1)

With dropout, we sample Bernoulli random variables for every input point and for every network
unit in each layer. Each variable takes value 1 with probability pi for layer i. A unit is dropped (i.e.
its value is set to zero) for a given input if its corresponding binary variable takes value 0. We use
the same binary variable values in the backward pass propagating the derivatives to the parameters.
Other forms of stochastic regularisation correspond to alternative procedures. With Multiplicative
Gaussian Noise for example we would multiply each unit by N (1, 1).

Compared to the non-probabilistic NN, the Gaussian process (GP) is a powerful tool in statistics that
allows us to model distributions over functions [8]. Given training inputs {x1, . . . ,xN} and their
corresponding outputs {y1, . . . ,yN}, we would like to estimate a function y = f(x) that is likely
to have generated our observations. For classification with D classes we place a joint Gaussian

2

distribution over all function values F = [f1, ..., fN] with fn = [fn1, ..., fnD] and fnd = fd(xn),
and sample from a categorical distribution with probabilities given by passing F through an element-
wise softmax:

F |X ∼ N (0,K(X,X)) (2)

yn | fn ∼ Categorical

(
exp(fn)/

(∑
d′

exp(fnd′)

))
for n = 1, ..., N with observed class label yn, and a covariance function K(X1,X2).

Our predictive probability

p(y∗|x∗,X,Y) =

∫
p(y∗|f∗)p(f∗|x∗,X,Y)df∗ (3)

is intractable for our model. To approximate it we could condition the model on a finite set of
random variables ω. We make a modelling assumption and assume that the model depends on these
variables alone, making them into sufficient statistics in our approximate model.

The predictive distribution for a new input point x∗ is then given by

p(y∗|x∗,X,Y) =

∫
p(y∗|f∗)p(f∗|x∗,ω)p(ω|X,Y) df∗dω.

The distribution p(ω|X,Y) cannot usually be evaluated analytically as well. Instead we define an
approximating variational distribution q(ω), whose structure is easy to evaluate.

We would like our approximating distribution to be as close as possible to the posterior distribution
obtained from the full Gaussian process. We thus minimise the Kullback–Leibler (KL) divergence:
KL(q(ω) || p(ω|X,Y)), resulting in the approximate predictive distribution

q(y∗|x∗) =
∫
p(y∗|f∗)p(f∗|x∗,ω)q(ω)df∗dω. (4)

Minimising the Kullback–Leibler divergence is equivalent to maximising the log evidence lower
bound,

LVI :=

∫
q(ω)p(F|X,ω) log p(Y|F)dFdω − KL(q(ω)||p(ω)) (5)

with respect to the variational parameters defining q(ω).

Gal and Turner [9] have shown that the Gaussian process can be approximated by defining ω =

{M̂1, M̂2} to be an approximating distribution over the spectral frequencies and their coefficients
in a Fourier decomposition of our function:

f | x,ω ∼
√

1

K
M̂2σ

(
M̂1x+m

)
with σ(·) determined by the covariance function K(·, ·). Gal and Ghahramani [1] have shown that
(5) results in dropout’s objective when approximating the integral with Monte Carlo integration with
a single sample2 ω̂ ∼ q(ω) and using approximating distribution q(ω) of the form

ω = {M̂i}Li=1 (6)

M̂i = Mi · diag([zi,j]Ki
j=1) (7)

zi,j ∼ Bernoulli(pi) for i = 1, ..., L, j = 1, ...,Ki−1 (8)
given some probabilities pi and matrices Mi being variational parameters (with dimensions Ki ×
Ki−1). The diag(·) operator maps vectors to diagonal matrices whose diagonals are the elements
of the vectors. The binary variable zi,j = 0 corresponds to unit j in layer i − 1 being dropped out
as an input to the i’th layer. This results in an identical model structure and optimisation objective
to (1), in effect resulting in the same model parameters that best explain the data. Other stochastic
regularisation techniques are obtained for alternative choices of q(ω).

The developments above shed some light on the problem of network structure design. Each GP co-
variance function has a one-to-one correspondence with the combination of both NN non-linearities
and weight regularisation. So given a dataset of pairs of inputs (x,y), and outputs z, a NN of the
form z = W′σ(W1x +W2y) = W′σ([W1;W2]

T [x;y]) would correspond to a GP covariance

2Using stochastic optimisation the new noisy objective would converge to the same optima as (5).

3

that concatenates both inputs. We would have that two outputs z1, z2 (with corresponding inputs
(x1,y1) and (x2,y2)) are very similar when both x1 is similar to x2 and y1 is similar to y2. On
the other hand, the form z = W′

1σ(W1x) +W′
2σ(W2y) corresponds to a sum of two covariance

functions (and, in fact, simply a sum of two functions). In this case two outputs z1, z2 would be dis-
similar when both x1 is dissimilar to x2 and y1 is dissimilar to y2. Input similarity here is defined
simply by the covariance value on the pair of inputs.

3 Stochastic Regularisation in Arbitrary Networks as Approximate Varia-
tional Inference in Bayesian Neural Networks

We now link the derivation above to variational inference in Bayesian NNs, extending on [1] to
arbitrary network structures. The derivation gives us tools to answer the other questions discussed
in the introduction – the principles underlying stochastic regularisation techniques. In the next
section we will give a concrete example of the framework demonstrating its practical impact in
image classification with a Bayesian convnet. These do not necessarily have a corresponding GP
interpretation, but can be modelled with the following Bayesian NN interpretation.

One defines a Bayesian NN by placing a prior distribution over the weights of an arbitrary NN.
Given weight matrices Wi and bias vectors bi for layer i, we often place standard matrix Gaussian
prior distributions over the weight matrices, p(Wi):

Wi ∼ N (0, I).
We assume a point estimate for the bias vectors for simplicity. Denote the random output of a
NN with weight random variables (Wi)

L
i=1 on input x by f̂

(
x, (Wi)

L
i=1

)
. We assume a softmax

likelihood given the NN’s weights:

p
(
y|x, (Wi)

L
i=1

)
= Categorical

(
exp(f̂)/

∑
d′

exp(f̂d′)

)
with f̂ = f̂

(
x, (Wi)

L
i=1

)
a random variable.

We are interested in finding the most probable weights that have generated our data – the posterior
over the weights given our observables X,Y: p

(
(Wi)|X,Y

)
(we write (Wi) to denote (Wi)

L
i=1

for brevity). This posterior is not tractable in general, and we use variational inference to approxi-
mate it as was done in [10, 11, 12, 13]. We need to define an approximating variational distribution
q
(
(Wi)

)
, and then minimise the KL divergence between the approximating distribution and the full

posterior:
KL
(
q
(
(Wi)

)
|| p
(
(Wi)|X,Y

))
∝

−
∫
q
(
(Wi)

)
log p

(
Y|X, (Wi)

)
+ KL

(
q
(
(Wi)

)
|| p
(
(Wi)

))
. (9)

We define our approximating variational distribution q(Wi) for every layer i as
Wi = Mi · diag([zi,j]Ki

j=1) (10)

zi,j ∼ Bernoulli(pi) for i = 1, ..., L, j = 1, ...,Ki−1 (11)
with zi,j Bernoulli distributed random variables and variational parameters Mi. Approximating eq.
(9) with Monte Carlo integration over zi we can continue the derivation following [1] recovering
the dropout model where dropout is performed before every layer Wi. Defining zi,j ∼ N (1, 1)
instead of Bernoulli we recover Multiplicative Gaussian Noise. Approximating the last term in eq.
(9) results in L2 regularisation over the weight matrices [7, appendix, section A].

This derivation sheds light on the second question raised in the introduction – the reasons dropout
and its stochastic regularisation variants work so well. The results above suggest that dropout works
well because it approximately integrates over the model’s parameters. It also explains why Multi-
plicative Gaussian Noise works well – it simply corresponds to an alternative approximating varia-
tional distribution.

Dropout and its stochastic regularisation variants are often assessed by setting the weight matrices to
their mean at test time. Combining Bayesian techniques and deep learning however, the derivation
directs us towards a different testing technique. Predictions in the Bayesian model follow equa-
tion (4) replacing the posterior p

(
(Wi)|X,Y

)
with the approximate posterior q

(
(Wi)

)
. We can

4

approximate the integral with Monte Carlo integration:

p(y∗|x∗,X,Y) ≈
∫
p(y∗|x∗, (Wi)

)
q
(
(Wi)

)
≈ 1

T

T∑
t=1

p(y∗|x∗, (Wi)t) (12)

with (Wi)t ∼ q
(
(Wi)

)
. We refer to this as MC dropout when q(·) is defined with Bernoulli

random variables. This equation has been suggested before as model averaging in the discrete case of
Bernoulli random variables [4, section 7.5]. It was suggested that setting the random weight matrices
to their mean approximates this quantity following the empirical observation that performance does
not suffer much. We will next use our results to answer the last question raised in the introduction –
how to use stochastic regularisation with convolutions.

4 Example Application: Bayesian Convolutional Neural Networks

Convolutional neural networks (convnets) have become an immensely popular image processing
tool. These work extremely well for tasks ranging from classification and object recognition to
segmentation [14]. These tools are built of several convolution layers (which preserve spatial infor-
mation in the image) followed by inner-product layers. Stochastic regularisation techniques (dropout
in particular) are often used with these tools, but only with the inner-product layers at the end of the
model. Dropout has never been used in convnets with convolution layers, perhaps because empirical
results with the standard dropout approximation suggested deteriorated performance (as can also
be seen in our experiments in the appendix). Standard dropout approximates model output during
test time by weight averaging. Instead, using the Bayesian methodology we evaluate the predictive
mean – and average stochastic forward passes through the model (eq. (12)). Following the Bayesian
interpretation of the model we obtained a significant improvement in classification accuracy, and
managed to demonstrate new state-of-the-art results on the CIFAR-10 dataset. Full experiment de-
tails are given in the appendix. It is interesting to note that Srivastava et al. [4, section 7.5] gave
empirical results suggesting that the standard dropout approximation is equivalent to MC dropout,
and it seems that most research has followed this approximation. The results we have shown suggest
the contrary however.

5 Where Next?

The framework above lays the foundations of a new and exciting field of study combining modern
deep learning and Bayesian techniques in a practical way. Many open problems arise within it, and
here we survey directions for future research.

1. Deep learning can be explained by a mathematically rigorous theory. We already saw
examples of this above – explaining the theory behind the performance of dropout and its
variants. The vast literature of Bayesian statistics contains many tools that can be used to
analyse deep learning models, and Gaussian processes form only a small part of it.

2. Deep learning can be extended in a principled way. Understanding the underlying prin-
ciples leading to good models allows us to improve upon them. For example, alternative
approximating distributions to the ones discussed above would translate to new stochastic
regularisation techniques. These can range from simple distributions to complex ones, ty-
ing different parameters to force correlations between the weights. Model compression can
be achieved by forcing weights to take values from a discrete distribution over a continuous
base measure of “hyper-weights” for example.

3. Deep learning uncertainty. Initial research in [7] assessed the performance of dropout in
terms of the predictive mean and variance. Even though the Bernoulli approximating distri-
bution is a crude one, the model outperformed its equivalents in the field. But different non-
linearity–regularisation combinations correspond to different Gaussian process covariance
functions, and these have different characteristics in terms of the predictive uncertainty. Un-
derstanding the behaviour of different model structures and the resulting predictive mean
and variance are of crucial importance to practitioners making use of dropout’s uncertainty.

4. Deep learning can make use of Bayesian models. A much more interesting application
of the theory above is the combination of techniques from the two fields: deep learning
and Bayesian modelling. Bayesian models, often used in data analysis, strive to describe
data in an interpretable way – a property that most deep learning models lack. Using the
theory above we can combine deep learning with interpretable Bayesian models and build

5

hybrid models that draw from the best both worlds have to offer. For example, in the
fields of computational linguistics and language processing we often look for models that
can explain the linguistic phenomena underlying our data. Current deep learning methods
work well modelling the data and have improved considerably on previous research – partly
due to their tractability and ability to go beyond the bag-of-words assumptions. But the
models are extremely opaque and have not been able to explain the linguistic principles
they use. Interleaving Bayesian models with deep ones we could answer many of these
open problems.

5. Bayesian models can make use of deep learning. The field of Bayesian modelling can
benefit immensely from the simple data representations obtained from deep learning mod-
els. Sequence data, image data, high dimensional data – these are structures that traditional
Bayesian techniques find difficult to handle. Many unjustified simplifying assumptions are
often used with these data structures: bag-of-words assumptions, reducing the dimension-
ality of the data, etc. Interpreting deep learning models as Bayesian ones we can combine
these easily and in a principled way. Further, models can be built in a compositional fashion
by propagating derivatives, forming small building blocks that can be assembled together
by non-experts.

6. Unsupervised deep learning. One last problem discussed here is the design of unsuper-
vised models. Bayesian statistics lends itself naturally to data analysis and unsupervised
data modelling. With the Bayesian interpretation of modern deep learning tools new hori-
zons open and new tools become available to solve this laborious task.

6 Conclusions

We have presented new theoretical developments casting modern deep learning techniques as ap-
proximate variational inference, and demonstrated the impact of the theory through an application
in image classification. The theory lays the foundations to a series of exciting new research prob-
lems, of which only a small fraction was discussed above.

References

[1] Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian approximation: Insights and applications. In
Deep Learning Workshop, ICML, 2015.

[2] Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R Salakhutdi-
nov. Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint
arXiv:1207.0580, 2012.

[3] L Wan, M Zeiler, S Zhang, Y LeCun, and R Fergus. Regularization of neural networks using dropconnect.
In ICML-13, 2013.

[4] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout:
A simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research,
15(1):1929–1958, 2014.

[5] Stefan Wager, Sida Wang, and Percy S Liang. Dropout training as adaptive regularization. In Advances
in Neural Information Processing Systems, pages 351–359, 2013.

[6] Pierre Baldi and Peter J Sadowski. Understanding dropout. In Advances in Neural Information Processing
Systems, pages 2814–2822, 2013.

[7] Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian approximation: Representing model uncer-
tainty in deep learning. arXiv:1506.02142, 2015.

[8] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine Learning
(Adaptive Computation and Machine Learning). The MIT Press, 2006. ISBN 026218253X.

[9] Yarin Gal and Richard Turner. Improving the Gaussian process sparse spectrum approximation by repre-
senting uncertainty in frequency inputs. In Proceedings of the 32nd International Conference on Machine
Learning (ICML-15), 2015.

[10] Geoffrey E Hinton and Drew Van Camp. Keeping the neural networks simple by minimizing the descrip-
tion length of the weights. In Proceedings of the sixth annual conference on Computational learning
theory, pages 5–13. ACM, 1993.

[11] David Barber and Christopher M Bishop. Ensemble learning in Bayesian neural networks. NATO ASI
SERIES F COMPUTER AND SYSTEMS SCIENCES, 168:215–238, 1998.

[12] Alex Graves. Practical variational inference for neural networks. In Advances in Neural Information
Processing Systems, pages 2348–2356, 2011.

6

[13] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty in neural
networks. arXiv preprint arXiv:1505.05424, 2015.

[14] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional
neural networks. In Advances in neural information processing systems, pages 1097–1105, 2012.

[15] Yarin Gal and Zoubin Ghahramani. Bayesian convolutional neural networks with Bernoulli approximate
variational inference. arXiv:1506.02158, 2015.

[16] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[17] Yann LeCun and Corinna Cortes. The mnist database of handwritten digits, 1998.

[18] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. Computer
Science Department, University of Toronto, Tech. Rep, 1(4):7, 2009.

[19] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Girshick, Sergio
Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture for fast feature embedding. arXiv
preprint arXiv:1408.5093, 2014.

[20] Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. arXiv preprint arXiv:1312.4400, 2013.

[21] Chen-Yu Lee, Saining Xie, Patrick Gallagher, Zhengyou Zhang, and Zhuowen Tu. Deeply-supervised
nets. arXiv preprint arXiv:1409.5185, 2014.

[22] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru
Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. arXiv preprint
arXiv:1409.4842, 2014.

7

A Empirical Evaluation

We give some results assessing our Bayesian counterpart to the convolutional neural network model
in image classification, with a full study of the model given in [15]. By interleaving Bayesian
techniques into deep learning we attain a considerable improvement in performance for simple
models, and get state-of-the-art performance with complex ones. We compare the simple LeNet
network structure [16] on MNIST [17] and CIFAR-10 [18] with and without a Bayesian treatment,
and test various existing complex model architectures in the literature with the added benefit of
our Bayesian techniques. All experiments were done using the Caffe framework [19], requiring
identical training time to that of standard convnets, with the configuration files available online at
http://mlg.eng.cam.ac.uk/yarin/.

A.1 Bayesian Convolutional Neural Networks

We implement a Bayesian convnet by putting a distribution over the convolution layers, and approx-
imating the posterior with variational inference. Relying on the theoretical developments above,
this is equivalent to performing a stochastic regularisation technique after the convolution layers and
assessing the model at test time with eq. (12). We choose dropout as our stochastic regularisation
technique and assess the model by averaging stochastic forward passes through the network. On
both the MNIST dataset and CIFAR-10 dataset this results in a considerable improvement in test
accuracy compared to existing techniques in the literature.

We refer to the Bayesian convnet implementation with dropout used after every parameter layer as
“lenet-all”, and compare it to the traditional use of dropout after the fully connected inner-product
layers at the end of the network alone. We refer to this model as “lenet-ip”. Additionally we compare
to LeNet as described originally in [16] with no dropout at all, referred to as “lenet-none”. We eval-
uate each dropout network structure (lenet-all and lenet-ip) using two testing techniques. The first is
using weight averaging, the standard way dropout is used in the literature (referred to as “Standard
dropout”). This involves multiplying the weights of the i’th layer by pi at test time. We use the
Caffe reference implementation for this [19]. The second testing technique involves averaging T
stochastic forward passes through the model. We do this following the Bayesian interpretation of
dropout derived in eq. (12). This technique is referred to here as “MC dropout”. The technique has
been motivated in the literature before as model averaging, but never used with convnets. In this
experiment we average T = 50 forward passes through the network. We stress that the purpose of
this experiment is not to achieve state-of-the-art results on either dataset, but rather to compare the
different models with different testing techniques. Full experiment set-up is given in [15].

104 105 106 107

Batches

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

E
rr

o
r

(%
)

Standard dropout (lenet-all)

MC dropout (lenet-all)

Standard dropout (lenet-ip)

MC dropout (lenet-ip)

No dropout (lenet-none)

(a) MNIST

103 104 105

Batches

15

20

25

30

35

40

45

50

55

60

E
rr

o
r

(%
)

Standard dropout (lenet-all)

MC dropout (lenet-all)

Standard dropout (lenet-ip)

MC dropout (lenet-ip)

No dropout (lenet-none)

(b) CIFAR-10

Figure 1: Test error for LeNet with dropout applied after every weight layer (“lenet-all” –
our Bayesian treatment of the convnet model, blue), dropout applied after the fully connected
layer alone (“lenet-ip”, green), and without dropout (“lenet-none”, dotted red line). Standard
dropout is shown with a dashed line, MC dropout is shown with a solid line. Note that although
Standard dropout lenet-all performs very badly on both datasets (dashed blue line), when evaluating
the same network with MC dropout (solid blue line) the model outperforms all others.

8

http://mlg.eng.cam.ac.uk/yarin/

Krizhevsky et al. [14] and most existing convnets literature use Standard dropout after the fully-
connected layers alone, equivalent to “Standard dropout lenet-ip” in our experiment. Srivastava
et al. [4, section 6.1.2] use Standard dropout in all convnet layers, equivalent to “Standard dropout
lenet-all” in our experiment. Srivastava et al. [4] further claim that Standard dropout results in very
close results to MC dropout in normal NNs, but have not tested this claim with convnets.

Figure 1 shows classification error as a function of batches on log scale for all three models (lenet-
all, lenet-ip, and lenet-none) with the two different testing techniques (Standard dropout and MC
dropout) for MNIST (fig. 1a) and CIFAR-10 (fig. 1b). It seems that Standard dropout in lenet-
ip results in improved results compared to lenet-none, with the results more pronounced on the
MNIST dataset than CIFAR-10. When Standard dropout testing technique is used with our Bayesian
convnet (with dropout applied after every parameter layer – lenet-all) performance suffers. However
by averaging the forward passes of the network the performance of lenet-all supersedes that of all
other models (“MC dropout lenet-all” in both 1a and 1b). Our results suggest that MC dropout
should be carried out after all convolution layers.

A.2 MC Dropout in Standard Convolutional Neural Networks

We evaluate the use of Standard dropout compared to MC dropout (our Bayesian technique) on
existing convnet models previously published in the literature. The recent state-of-the-art convnet
models use dropout after fully-connected layers that are followed by other convolution layers, sug-
gesting that improved performance could be obtained with MC dropout.

We evaluate two well known models that have achieved state-of-the-art results on CIFAR-10 in the
past several years. The first is Network in network (NIN) [20]. The model was extended by [21]
who added multiple loss functions after some of the layers – in effect encouraging the bottom layers
to explain the data better. The new model was named a Deeply supervised network (DSN). The
same idea was used in [22] to achieve state-of-the-art results on ImageNet.

We assess these models on the CIFAR-10 dataset, as well as on an augmented version of the dataset
for the DSN model [21]. We replicate the experiment set-up as it appears in the original papers,
and evaluate the models’ test error using Standard dropot as well as using MC dropout, averaging
T = 100 forward passes. MC dropout testing gives us a noisy estimate, with potentially different
test results over different runs. We therefore repeat the experiment 5 times and report the average
test error. We use the models obtained when optimisation is done (using no early stopping). We
report standard deviation to see if the improvement is statistically significant.

Test error using both Standard dropout and MC dropout for the models (NIN, DSN, and Augmented-
DSN on the augmented dataset) are shown in table 1. As can be seen, using MC dropout a statis-
tically significant improvement can be obtained for all three models (NIN, DSN, and Augmented-
DSN), with the largest increase for Augmented-DSN. It is also interesting to note that the lowest test
error we obtained for Augmented-DSN is 7.51. Our results suggest that MC dropout should be used
even with standard convnet models.

CIFAR Test Error (and Std.)
Model Standard Dropout MC Dropout
NIN 10.43 10.27± 0.05

DSN 9.37 9.32± 0.02

Augmented-DSN 7.95 7.71± 0.09

Table 1: Test error on CIFAR-10 with the same networks evaluated using Standard dropout
versus MC dropout (T = 100, averaged with 5 repetitions and given with standard deviation). MC
dropout achieves consistent improvement in test error compared to Standard dropout. The lowest
error obtained is 7.51 for Augmented-DSN.

9

	Introduction
	Stochastic Regularisation Techniques in Deep Networks and the Gaussian Process
	Stochastic Regularisation in Arbitrary Networks as Approximate Variational Inference in Bayesian Neural Networks
	Example Application: Bayesian Convolutional Neural Networks
	Where Next?
	Conclusions
	Empirical Evaluation
	Bayesian Convolutional Neural Networks
	MC Dropout in Standard Convolutional Neural Networks

