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Abstract

We introduce a kernel approximation strategy that enables Gaussian process train-
ing and inference in Opdnpq time and Opdnq storage for a d-dimensional dataset
of size n. Our GRIEF kernel consists of p eigenfunctions approximated on a dense
Cartesian tensor product grid of inducing points. We show that by exploiting
algebraic properties of Kronecker and Khatri-Rao tensor products, computational
complexity of the training procedure can be independent of the number of inducing
points, allowing us to use arbitrarily many to achieve a globally accurate kernel
approximation. We benchmark our algorithms on real-world datasets with as many
as two-million training points and up to 1032 inducing points.

Gaussian process (GP) modelling is a powerful Bayesian approach for classification and regression,
however, it is restricted to modestly sized datasets since training and inference require Opn3q
time and Opn2q storage, where n is the number of training points [1]. This has motivated the
development of approximate GP methods that use a set of m (! nq inducing points to reduce the
computational cost and memory requirements to Opm2nq and Opmnq, respectively [2–5]. However,
such techniques perform poorly if too few inducing points are used, and any computational savings are
lost on complex datasets that require m to be large. Wilson and Nickisch [6] exploited the structure
of inducing points placed on a Cartesian product grid, allowing for m ¡ n while dramatically
reducing computational demands over an exact GP. This inducing point structure enables significant
performance gains in low-dimensions, however, time and storage complexities scale exponentially
with the dataset dimensionality, rendering the technique intractable for general learning problems
unless a dimensionality reduction procedure is applied. In the present work, a Cartesian product grid
of inducing points is also considered, however, we show that these computational bottlenecks can be
eliminated by identifying and exploiting further structure of the resulting matrices. The proposed
approach leads to a highly scalable algorithm that performs exact training and inference with a
non-degenerate GP in Opdnpq time and Opdnq memory, where d is the dimensionality of the dataset,
and p is the number of eigenfunctions that we will describe next. We emphasize that our complexity
is independent of m, which can be set arbitrarily high.

Our central idea is to approximate the exact kernel as a finite sum of eigenfunctions that can be found
efficiently using a Nyström approximation [5]. This approach is similar to the “Nyström method”
of Williams and Seeger [4], however, our final approximation is a valid probabilistic model. In
other words, our model is sparse in the kernel eigenfunctions rather than the number of inducing
points, which can greatly exceed the size of the training set due to the structure we introduce. This
is attractive since it is well-known that eigenfunctions produce the most compact representation
among orthogonal basis functions. Although our eigenfunctions are approximate, they convergence
in the limit of large n [7]. Additionally, our ability to consider a huge value of m allows us to fill
out the input space with inducing points, thereby enabling accurate global approximations of the
eigenfunctions, even far from the training data. These basis functions also live in a reproducing kernel
Hilbert space, unlike other sparse GPs whose bases have a pre-specified form (e.g. Lázaro-Gredilla
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et al. [8]). In addition, we show how to recover a non-degenerate kernel by including a correction
term that further improves our approximation without affecting computational complexity.

We begin by outlining our approximate kernel for a general distribution of inducing points. We then
place the inducing points on a grid and discuss how our method remains computationally attractive
even in high-dimensional problems with m " n. The discussion will focus on solving a linear system
with the kernel covariance matrix which is the most expensive part of GP training and inference.

1 Approximate Kernel

Given a kernel k : Rd � Rd Ñ R, we consider its approximation in terms of p eigenfunctions
(obtained using the Nyström approximation) written in the following form [5]

rkpx, zq � p̧
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� Kx,UQST

p Λ�1
p SpQ

TKU,z � kpx, zq, (1)

where x, z P Rd are d-dimensional inputs; U � tuiumi�1 refers to the set of m inducing point
locations; K_,_ refers to a matrix of exact kernel evaluations between the two sets in the subscript;
Λ,Q P Rm�m are diagonal and unitary matrices containing the eigenvalues and eigenvectors of
KU,U, respectively; λi and qi denote the ith largest eigenvalue and corresponding eigenvector of
KU,U, respectively; Sp P Rp�m is a sparse selection matrix where Sppi, :q contains one value set to
unity in the column corresponding to the index of the ith largest value on the diagonal of Λ; and
we use the shorthand notation Λp � SpΛST

p P Rp�p to denote a diagonal matrix containing the p
largest eigenvalues of KU,U, sorted in descending order. Our kernel covariance matrix can then be
written for a set of n inputs X � txiuni�1 in our training set as

rKX,X � KX,UQST
p Λ�1

p SpQ
TKU,X, (2)

which we observe is the same as the covariance matrix from the “Nyström method” of Williams and
Seeger [4]. However, unlike the Nyström method, we replace the kernel and not just the covariance
matrix to recover a valid probabilistic model (see discussion in [9, 10]).

2 Inducing point Structure

Peng and Qi [5] considered a variant of the approximate kernel in eq. (1), with an optimization scheme
applied to find the best m inducing point locations, U, which we do not consider here. Instead, we
would like to use so many inducing points that optimizing U is unnecessary, we will even consider
m " n. This can be done efficiently by using a product correlation kernel for k and distributing
inducing points on a Cartesian tensor product grid as considered by Wilson and Nickisch [6] in
their “structured kernel interpolation” (SKI) approach. We do this by taking U to be distributed on
a full grid with sm� d

?
m�Op10q points along each dimension. When this is done, the covariance

matrix on the inducing point grid inherits a Kronecker product (b) structure, KU,U�
Âd

i�1 K
piq
U,U,

enabling efficient Kronecker matrix algebra to be exploited. For instance, since K
piq
U,U P R�m��m

are small matrices, storage of KU,U only requires Opdm2{dq�Opdsm2q memory. In addition, the
eigen-decomposition of KU,U requires only Opdm3{dq�Opdsm3q time and the eigenvector matrix
Q � Âd

i�1 Qpiq also inherits a Kronecker product structure, enabling matrix-vector products
with rKX,X in Opdmpd�1q{dq�Opdsmd�1q operations (see [11, 12] for details). In low-dimensions,
exploiting this structure can be greatly advantageous, however, we can immediately see from the
above complexities that the cost of matrix-vector products with rKX,X increases exponentially in d.
The storage requirements will similarly increase exponentially in d since a vector of length m�smd

needs to be stored when a matrix-vector product is made with rKX,X, and KX,U requires Opsmdnq
storage. This poor scaling poses a serious impediment to the successful application of this approach
to high-dimensional datasets. Such restrictions apply similarly to SKI where its use is recommended
only for very low-dimensional problems, d ¤ 5 [13].

We now show how to massively decrease time and storage requirements from exponential to linear in
d by identifying further matrix structure in our problem. From our covariance matrix rKX,X in eq. (2)
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(and similarly for our kernel in eq. (1)), we discover that the exact cross-covariance matrices between
test or train points and inducing points, e.g. KX,U, admits a row-partitioned Khatri-Rao structure

KX,U �
d
�
i�1
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�
����
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p2q
X,Up1, :q b � � � b K

pdq
X,Up1, :q

K
p1q
X,Up2, :q b K

p2q
X,Up2, :q b � � � b K

pdq
X,Up2, :q

...
...

. . .
...

K
p1q
X,Upn, :q b K

p2q
X,Upn, :q b � � � b K

pdq
X,Upn, :q

�
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where � is the Khatri-Rao product (see [14] for details on this tensor product). Since K
piq
X,U are

only of size n� sm, the storage of KX,U has decreased to Opdnsmq�Opdnq. Further, by exploiting
both Kronecker and Khatri-Rao matrix algebra, we can show that matrix-vector products can be
made with rKX,X in Opdnpq time and only Opdnq storage is required for the entire GP training and
inference process. To do this, we show how matrix-vector products can be made with rK within the
promised complexity so that we can use a conjugate gradient method to solve a linear system withrK� σ2I, where σ2 ¡ 0 is the variance of Gaussian noise in the training data1.

To take fast matrix-vector products with rKX,X, observe that KX,UQ � �
d
i�1 K

piq
X,UQpiq is a row-

partitioned Khatri-Rao product matrix (using theorem 2 of [14]), and that ST
p can be written as a

column-partitioned Khatri-Rao product matrix. It can then be shown that a matrix-vector product with
pKX,UQqST

p (a matrix product of row- and column-partitioned Khatri-Rao matrices) can be made in
Opdnpq time and using no more than Opnq additional memory. This is done by expanding one (or
several) rows of KX,UQST

p at a time; further details can be found in the supplementary material. The
same method can be used for fast matrix-vector multiplication with SpQ

TKU,X � SppKX,UQqT .
Noting that Λp P Rp�p is diagonal, it is evident that we do not exceed the promised complexities.

What results is a model with basis eigenfunctions that are structured on a grid of inducing points, and
although m increases exponentially in d, the cost of GP training and inference is not affected. We
call the resulting model GP-GRIEF (GP with GRId-structured Eigen-Functions).

It is possible to introduce a correction term to rk (eq. (1)), giving

rkcorpx, zq � rkpx, zq � δx,zpkpx, zq � rkpx, zqq, (4)

where δx,z � 1 if x � z, else 0. The kernel rkcor then has an infinite number of basis functions
(provided k does also) and our resulting GP will be non-degenerate. This correction term requires the
diagonal of rKX,X and it can be shown that this can be computed in Opdnpq time and with no more
than Opdnq storage by exploiting the matrix structure previously outlined (details in the supplement).
Therefore, adding this correction does not affect the computational complexity of GP training.

3 Experimental Studies

Figure 1 shows a comparison of the FITC method [3] versus the proposed GP-GRIEF method on a
two-dimensional test problem, using a squared exponential kernel and n � 10 training points. FITC
(using GPy [15]) with m � 8 achieves a root-mean squared error (RMSE) of 0.47 on a test set,
whereas GP-GRIEF with only half the number of basis functions, p � 4, achieves an RMSE of 0.34,
identical to that of an exact GP. GP-GRIEF has a dense grid of inducing points whose quantity does
not affect training or inference complexity, as shown in section 2.

We next discuss some early results on large real-world regression datasets from the UCI repository.
We report the mean and standard deviation of the RMSE from 10-fold cross validation2 along with
the mean training time per fold, which includes hyperparameter estimation through log marginal
likelihood maximization using a machine with two E5-2680 v3 processors. For all runs, we use a
squared-exponential kernel with automatic relevance determination (SE-ARD) and we vary sm and p.
Also presented are test errors reported by Yang et al. [16] for the same train-test splits with Fastfood

1The other computationally demanding task of GP training and inference is computation of log | rKX,X�σ
2In|

which we can approximate in Opd sm3q using the Nyström approximation from [6].
290% train, 10% test per fold. We use folds from https://people.orie.cornell.edu/andrew/code/.
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(a) Test Data. (b) FITC, m � 8. (c) GP-GRIEF, m � 25, p � 4.
Figure 1: Comparison of FITC vs GP-GRIEF on the function fpx, yq� sinpxq sinpyq. The crosses
denote the n � 10 training point positions whose responses are corrupted with N p0, 0.1q noise. Dots
denote inducing point locations within bounds and circles show the direction of those outside bounds.

GP-GRIEF Yang et al. [16]

Dataset n d p m�smd Time (mins) RMSE RMSE

Pumadyn 8192 32 100 1032 1.6 0.21� 0.00
0.20� 0.001000 1032 9.3 0.20� 0.00

Elevators 16599 18

100 518 0.7 0.097� 0.001

0.090� 0.001100 1018 0.8 0.096� 0.001
1000 1018 6 0.092� 0.002
5000 1018 30.9 0.091� 0.001

Protein 45730 9 100 109 0.9 0.63� 0.01
0.53� 0.015000 109 34.2 0.58� 0.01

Electric 2049280 11 100 1011 65.6 0.068� 0.002 0.120� 0.120

Table 1: Mean and standard deviation of test error and average training time (including hyperparmater
estimation) from 10-fold cross validation (90% train, 10% test per fold) on UCI regression datasets.

expansions to approximate the SE-ARD kernel. GP-GRIEF shows comparable test error to Yang et al.
[16] on all datasets but performs considerably better on the Electric dataset with two-million training
points. Further, only p�100 basis functions were needed for this high quality model on the Electric
dataset and the entire training process took just about one hour.

Results for the Elevators dataset demonstrate the effective independence of training time on the num-
ber of inducing points: comparing the first and second rows of the Elevator dataset, we see that training
time increases by only 0.14� when m is increased by 262143�. This complexity independence
allows enormous numbers of inducing points to be used; we use m�1032 for the Pumadyn dataset
demonstrating the efficiency of the matrix algebra employed since storing a double-precision vector
of this length requires 800 billion Zettabytes, far more than all hard-disk space on earth, combined.
Lastly, we demonstrate linear scaling with respect to p, in-fact the scaling is usually sub-linear.

4 Conclusion & Future Work

Our new technique, GP-GRIEF, has been outlined along with some promising initial results on
real-world datasets where we demonstrated GP training and inference in Opdnpq time with Opdnq
storage. We demonstrated that our complexities are independent of m, allowing us to use up to
1032 inducing points for an accurate global kernel approximation. In the future, we would like to
consider some kernel parametrizations used by Peng and Qi [5] which may conflict with our goal of
approximating the exact kernel k, however, may enable a better data-fit when p ! n. Also, we will
explore applications of our approximate eigenfunctions to accelerate other kernel methods.

Acknowledgements: Work funded by an NSERC Discovery Grant and the Canada Research Chairs program.
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Supplementary Material

Fast Matrix-Vector Product Algorithm

In this section we describe how fast matrix-vector products can be made with rKX,X � σ2In to enable
GP training and inference in Opdnpq time and with Opdnq storage. In section 2, we discussed
that this comes down to performing matrix-vector multiplication with a matrix that is a product of
row- and column- Khatri-Rao matrices, such as pKX,UQqST

p . Algorithm mvKRrowcol describes how
this is done. The algorithm effectively computes the matrix row-by-row in the inner loop, however, it
can be easily modified to compute multiple rows simultaneously by considering j to be a vector of
indices whose length corresponds to the number of rows that are possible to fit in available memory.
This increases the size of the matrix operations considerably, thereby offering opportunities for
parallelization and the use of BLAS level-3 routines [17].

Algorithm mvKRrowcol Computes matrix-vector product RCb where R P Rn�m, C P Rm�p are
Khatri-Rao products of row- and column-partitioned matrices, respectively. Requires Opdnpq time if
we assume that one of R or C are dense and the other is sparse with one non-zero per row. Also, the
algorithm only requires Opnq additional memory. Note that � denotes the element-wise, Hadamard
product.

Input: b P Rp, R � d
�
i�1

Rpiq P Rn�m, Rpiq P Rn��m, C � d
�
i�1

Cpiq P Rm�p, Cpiq P R�m�p

Output: f � RCb P Rn

for j � 1 to n do
t � Rp1qpj, :qCp1q

for i � 2 to d do
t � t �Rpiqpj, :qCpiq

end for
fpjq � tb

end for

Fast Computation of Kernel Correction

We discuss how the kernel correction term in eq. (4) can be efficiently implemented to enable GP
training and inference within Opdnpq time and with Opdnq storage. The resulting covariance matrix
from this corrected kernel (eq. (4)) simply adds a diagonal term to rKX,X and so, it does not affect the
time for matrix-vector products, however, we need to show that this diagonal term can be computed
within the promised complexities.

Computing the diagonal correction term simply requires the diagonal of rKX,X which we show how to
efficiently compute in algorithm rr_cov_diag in Opdnpq time. We can see that this is a modification
of algorithm mvKRrowcol where the inner loop multiplication only needs to consider the jth column
of C.

Since this diagonal correction is cheap to compute and leads to a non-degenerate GP, we find that it is
always worthwhile to consider.

6



Algorithm rr_cov_diag Computes the diagonal of the covariance matrix formed by the kernelrk (from eq. (1)); diagp rKX,Xq � diag
�
KX,UQST

p Λ�1
p SpQ

TKU,X
� � diagppRCqTΛ�1

p pRCqq,
where we have denoted the row-partitioned Khatri-Rao product matrix R � Sp P Rp�m, and the
column-partitioned Khatri-Rao product matrix C � QTKU,X P Rm�n for notational convenience.
This computation requires Opdnpq time and only Opnq additional memory. Note that � denotes the
element-wise, Hadamard product.

Input: R � d
�
i�1

Rpiq P Rp�m, Rpiq P Rp��m,

C � d
�
i�1

Cpiq P Rm�n, Cpiq P R�m�n, Λ�1
p P Rp�p, diagonal.

Output: f � diagppRCqTΛ�1
p pRCqq P Rn

f � 0 P Rn

for j � 1 to p do
t � Rp1qpj, :qCp1q

for i � 2 to d do
t � t �Rpiqpj, :qCpiq

end for
f � f �Λ�1

p pj, jqpt � tq
end for
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