Scalable Gaussian Processes with Grid-Structured
Eigenfunctions (GP-GRIEF)

Trefor W. Evans Prasanth B. Nair
University of Toronto University of Toronto
trefor.evans@mail.utoronto.ca pbn@utias.utoronto.ca
Abstract

We introduce a kernel approximation strategy that enables Gaussian process train-
ing and inference in O(dnp) time and O(dn) storage for a d-dimensional dataset
of size n. Our GRIEF kernel consists of p eigenfunctions approximated on a dense
Cartesian tensor product grid of inducing points. We show that by exploiting
algebraic properties of Kronecker and Khatri-Rao tensor products, computational
complexity of the training procedure can be independent of the number of inducing
points, allowing us to use arbitrarily many to achieve a globally accurate kernel
approximation. We benchmark our algorithms on real-world datasets with as many
as two-million training points and up to 1032 inducing points.

Gaussian process (GP) modelling is a powerful Bayesian approach for classification and regression,
however, it is restricted to modestly sized datasets since training and inference require O(n?)
time and O(nQ) storage, where n is the number of training points [1]. This has motivated the
development of approximate GP methods that use a set of m (« n) inducing points to reduce the
computational cost and memory requirements to O(m?n) and O(mn), respectively [2-5]. However,
such techniques perform poorly if too few inducing points are used, and any computational savings are
lost on complex datasets that require m to be large. Wilson and Nickisch [6] exploited the structure
of inducing points placed on a Cartesian product grid, allowing for m > n while dramatically
reducing computational demands over an exact GP. This inducing point structure enables significant
performance gains in low-dimensions, however, time and storage complexities scale exponentially
with the dataset dimensionality, rendering the technique intractable for general learning problems
unless a dimensionality reduction procedure is applied. In the present work, a Cartesian product grid
of inducing points is also considered, however, we show that these computational bottlenecks can be
eliminated by identifying and exploiting further structure of the resulting matrices. The proposed
approach leads to a highly scalable algorithm that performs exact training and inference with a
non-degenerate GP in O(dnp) time and O(dn) memory, where d is the dimensionality of the dataset,
and p is the number of eigenfunctions that we will describe next. We emphasize that our complexity
is independent of m, which can be set arbitrarily high.

Our central idea is to approximate the exact kernel as a finite sum of eigenfunctions that can be found
efficiently using a Nystrom approximation [5]. This approach is similar to the “Nystrém method”
of Williams and Seeger [4], however, our final approximation is a valid probabilistic model. In
other words, our model is sparse in the kernel eigenfunctions rather than the number of inducing
points, which can greatly exceed the size of the training set due to the structure we introduce. This
is attractive since it is well-known that eigenfunctions produce the most compact representation
among orthogonal basis functions. Although our eigenfunctions are approximate, they convergence
in the limit of large n [7]. Additionally, our ability to consider a huge value of m allows us to fill
out the input space with inducing points, thereby enabling accurate global approximations of the
eigenfunctions, even far from the training data. These basis functions also live in a reproducing kernel
Hilbert space, unlike other sparse GPs whose bases have a pre-specified form (e.g. Lazaro-Gredilla

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

et al. [8]). In addition, we show how to recover a non-degenerate kernel by including a correction
term that further improves our approximation without affecting computational complexity.

We begin by outlining our approximate kernel for a general distribution of inducing points. We then
place the inducing points on a grid and discuss how our method remains computationally attractive
even in high-dimensional problems with m >» n. The discussion will focus on solving a linear system
with the kernel covariance matrix which is the most expensive part of GP training and inference.

1 Approximate Kernel

Given a kernel k£ : RY x RY — R, we consider its approximation in terms of p eigenfunctions
(obtained using the Nystrom approximation) written in the following form [5]

~ P 1 1
k(x,z) = <Kx,UQi> (Kz,qu> = K,uQS! A, 'S, Q Ky, ~ k(x,2), (1)
2\ n ris

where x,z € R? are d-dimensional inputs; U = {u;}™, refers to the set of m inducing point

locations; K| refers to a matrix of exact kernel evaluations between the two sets in the subscript;
A, Q € R"™*"™ are diagonal and unitary matrices containing the eigenvalues and eigenvectors of
Ky u, respectively; \; and q; denote the ith largest eigenvalue and corresponding eigenvector of
Ky u, respectively; S, € RP*™ is a sparse selection matrix where S, (i, :) contains one value set to
unity in the column corresponding to the index of the ith largest value on the diagonal of A; and
we use the shorthand notation A, = SpASpT € RP*P to denote a diagonal matrix containing the p
largest eigenvalues of Ky y, sorted in descending order. Our kernel covariance matrix can then be
written for a set of n inputs X = {x;}?_; in our training set as

Kxx = KxuQS, A, 'S,Q"Kyx, 2)

which we observe is the same as the covariance matrix from the “Nystrom method” of Williams and
Seeger [4]. However, unlike the Nystrém method, we replace the kernel and not just the covariance
matrix to recover a valid probabilistic model (see discussion in [9, 10]).

2 Inducing point Structure

Peng and Qi [5] considered a variant of the approximate kernel in eq. (1), with an optimization scheme
applied to find the best m inducing point locations, U, which we do not consider here. Instead, we
would like to use so many inducing points that optimizing U is unnecessary, we will even consider
m » n. This can be done efficiently by using a product correlation kernel for k£ and distributing
inducing points on a Cartesian tensor product grid as considered by Wilson and Nickisch [6] in
their “structured kernel interpolation” (SKI) approach. We do this by taking U to be distributed on
a full grid with m=¢/m~O(10) points along each dimension. When this is done, the covariance

matrix on the inducing point grid inherits a Kronecker product (®) structure, Ky y= ®f:1 K[(})U,

enabling efficient Kronecker matrix algebra to be exploited. For instance, since KS)U € RmMxm
are small matrices, storage of Ky y only requires O(dm?*)=0(dm?) memory. In addition, the
eigen-decomposition of Ky y requires only O(dm?/?)=0(dm?) time and the eigenvector matrix
Q = ®f=1 Q(i) also inherits a Kronecker product structure, enabling matrix-vector products
with IN{X,X in O(dm(d“)/d):O(dﬁzd“) operations (see [11, 12] for details). In low-dimensions,
exploiting this structure can be greatly advantageous, however, we can immediately see from the
above complexities that the cost of matrix-vector products with KX,X increases exponentially in d.
The storage requirements will similarly increase exponentially in d since a vector of length m=m?

needs to be stored when a matrix-vector product is made with Kx x, and Kx y requires (’)(T?Ldn)
storage. This poor scaling poses a serious impediment to the successful application of this approach
to high-dimensional datasets. Such restrictions apply similarly to SKI where its use is recommended
only for very low-dimensional problems, d < 5 [13].

We now show how to massively decrease time and storage requirements from exponential to linear in
d by identifying further matrix structure in our problem. From our covariance matrix Kx x in eq. (2)

(and similarly for our kernel in eq. (1)), we discover that the exact cross-covariance matrices between
test or train points and inducing points, e.g. Kx y, admits a row-partitioned Khatri-Rao structure

K1) © K1) @ - ® K{(1,:)

K{p(2:) ® K{(2,) @ - ® K{(2,:)

Kyy = % KU = 3)
s i1 X, U)

Kih(n,) © Kh(n2) ® -+ © Ky (n.)
where # is the Khatri-Rao product (see [14] for details on this tensor product). Since Kg)U are
only of size n x m, the storage of Kx y has decreased to O(dnm)~O(dn). Further, by exploiting
both Kronecker and Khatri-Rao matrix algebra, we can show that matrix-vector products can be
made with K x in O(dnp) time and only O(dn) storage is required for the entire GP training and
inference process. To do this, we show how matrix-vector products can be made with K within the
pwromised complexity so that we can use a conjugate gradient method to solve a linear system with

K + 021, where 0 > 0 is the variance of Gaussian noise in the training data'.

To take fast matrix-vector products with I~(X,X, observe that Kx yQ = *?:1 Kgé)UQ(i) iS a row-

partitioned Khatri-Rao product matrix (using theorem 2 of [14]), and that Sg can be written as a
column-partitioned Khatri-Rao product matrix. It can then be shown that a matrix-vector product with
(KX,UQ)SZ (a matrix product of row- and column-partitioned Khatri-Rao matrices) can be made in
O(dnp) time and using no more than O(n) additional memory. This is done by expanding one (or
several) rows of KX,UQSZ at a time; further details can be found in the supplementary material. The

same method can be used for fast matrix-vector multiplication with SpQTKU,X =S, (KxuQ)7.
Noting that A, € RP*? is diagonal, it is evident that we do not exceed the promised complexities.

What results is a model with basis eigenfunctions that are structured on a grid of inducing points, and
although m increases exponentially in d, the cost of GP training and inference is not affected. We
call the resulting model GP-GRIEF (GP with GRId-structured Eigen-Functions).

It is possible to introduce a correction term to k (eq. (1)), giving
Feor (X, 2) = k(x, 2) + 0x 0 (k(x,2) — k(x,2)),)

where 0x, = 1if x = z, else 0. The kernel %wr then has an infinite number of basis functions
(provided k does also) and our resulting GP will be non-degenerate. This correction term requires the
diagonal of Kx x and it can be shown that this can be computed in O(dnp) time and with no more
than O(dn) storage by exploiting the matrix structure previously outlined (details in the supplement).
Therefore, adding this correction does not affect the computational complexity of GP training.

3 Experimental Studies

Figure 1 shows a comparison of the FITC method [3] versus the proposed GP-GRIEF method on a
two-dimensional test problem, using a squared exponential kernel and n = 10 training points. FITC
(using GPy [15]) with m = 8 achieves a root-mean squared error (RMSE) of 0.47 on a test set,
whereas GP-GRIEF with only half the number of basis functions, p = 4, achieves an RMSE of 0.34,
identical to that of an exact GP. GP-GRIEF has a dense grid of inducing points whose quantity does
not affect training or inference complexity, as shown in section 2.

We next discuss some early results on large real-world regression datasets from the UCI repository.
We report the mean and standard deviation of the RMSE from 10-fold cross validation? along with
the mean training time per fold, which includes hyperparameter estimation through log marginal
likelihood maximization using a machine with two E5-2680 v3 processors. For all runs, we use a
squared-exponential kernel with automatic relevance determination (SE-ARD) and we vary m and p.
Also presented are test errors reported by Yang et al. [16] for the same train-test splits with Fastfood

!"The other computationally demanding task of GP training and inference is computation of log |IN(x,x +0’2In|
which we can approximate in O(dm?®) using the Nystrém approximation from [6].
290% train, 10% test per fold. We use folds from https://people.orie.cornell.edu/andrew/code/.

https://people.orie.cornell.edu/andrew/code/.

(a) Test Data.
Figure 1: Comparison of FITC vs GP-GRIEF on the function f(x,y)=sin(x) sin(y). The crosses
denote the n = 10 training point positions whose responses are corrupted with A/(0,0.1) noise. Dots
denote inducing point locations within bounds and circles show the direction of those outside bounds.

(b) FITC, m = 8. (¢) GP-GRIEF, m = 25, p = 4.

GP-GRIEF Yang et al. [16]
Dataset n d p m=m? Time (mins) RMSE RMSE
100 1032 1.6 0.21 £0.00
Pumadyn 8192 32 1000 1032 9.3 0.20 + 0.00 0.20 £ 0.00
100 518 0.7 0.097 + 0.001
100 1018 0.8 0.096 + 0.001
Elevators 16599 18 1000 108 6 0.092 £ 0.002 0.090 + 0.001
5000 1018 30.9 0.091 + 0.001
. 100 10° 0.9 0.63 £ 0.01
Protein 45730 9 5000 10 349 0.58 + 0.01 0.53 +0.01
Electric 2049280 11 100 101t 65.6 0.068 +0.002 0.120 +0.120

Table 1: Mean and standard deviation of test error and average training time (including hyperparmater
estimation) from 10-fold cross validation (90% train, 10% test per fold) on UCI regression datasets.

expansions to approximate the SE-ARD kernel. GP-GRIEF shows comparable test error to Yang et al.
[16] on all datasets but performs considerably better on the Electric dataset with two-million training
points. Further, only p=100 basis functions were needed for this high quality model on the Electric
dataset and the entire training process took just about one hour.

Results for the Elevators dataset demonstrate the effective independence of training time on the num-
ber of inducing points: comparing the first and second rows of the Elevator dataset, we see that training
time increases by only 0.14 x when m is increased by 262143 x. This complexity independence
allows enormous numbers of inducing points to be used; we use m=1032 for the Pumadyn dataset
demonstrating the efficiency of the matrix algebra employed since storing a double-precision vector
of this length requires 800 billion Zettabytes, far more than all hard-disk space on earth, combined.
Lastly, we demonstrate linear scaling with respect to p, in-fact the scaling is usually sub-linear.

4 Conclusion & Future Work

Our new technique, GP-GRIEF, has been outlined along with some promising initial results on
real-world datasets where we demonstrated GP training and inference in O(dnp) time with O(dn)
storage. We demonstrated that our complexities are independent of m, allowing us to use up to
1032 inducing points for an accurate global kernel approximation. In the future, we would like to
consider some kernel parametrizations used by Peng and Qi [5] which may conflict with our goal of
approximating the exact kernel k, however, may enable a better data-fit when p « n. Also, we will
explore applications of our approximate eigenfunctions to accelerate other kernel methods.

Acknowledgements: Work funded by an NSERC Discovery Grant and the Canada Research Chairs program.

References

(1]
(2]
(3]
(4]
(51
(6]
(71
(8]
(9]

[10]

[11]
[12]
[13]
[14]
[15]
[16]

[17]

C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. MIT Press,
2006.

A.J. Smola and P. Bartlett. “Sparse greedy Gaussian process regression”. In: Advances in
Neural Information Processing Systems. 2001, pp. 619-625.

E. Snelson and Z. Ghahramani. “Sparse Gaussian processes using pseudo-inputs”. In: Advances
in Neural Information Processing Systems 18 (2006), p. 1257.

C. K. I. Williams and M. Seeger. “Using the Nystrom method to speed up kernel machines”.
In: Advances in Neural Information Processing Systems. 2001, pp. 682—688.

H. Peng and Y. Qi. “EigenGP: Gaussian Process Models with Adaptive Eigenfunctions.” In:
International Joint Conference on Artificial Intelligence. 2015, pp. 3763-3769.

A. G. Wilson and H. Nickisch. “Kernel Interpolation for Scalable Structured Gaussian Pro-
cesses (KISS-GP)”. In: Proceedings of The 32nd International Conference on Machine Learn-
ing. 2015, pp. 1775-1784.

C. T. H. Baker. The numerical treatment of integral equations. Oxford: Clarendon press, 1977.
M. Lézaro-Gredilla, J. Quifionero-Candela, C. E. Rasmussen, and A. Figueiras-Vidal. “Sparse
spectrum Gaussian process regression”. In: Journal of Machine Learning Research 11.6 (2010),
pp. 1865-1881.

J. Quifionero-Candela and C. E. Rasmussen. “A unifying view of sparse approximate Gaussian
process regression”. In: Journal of Machine Learning Research 6.12 (2005), pp. 1939—1959.
C. K. I. Williams, C. E. Rasmussen, A. Scwaighofer, and V. Tresp. Observations on the
Nystrom method for Gaussian process prediction. Tech. rep. University of Edinburgh and
University College London, 2002.

C. F. Van Loan. “The ubiquitous Kronecker product”. In: Journal of Computational and
Applied Mathematics 123.1 (2000), pp. 85-100.

Y. Saatci. “Scalable inference for structured Gaussian process models”. PhD thesis. University
of Cambridge, 2011.

A. G. Wilson, Z. Hu, R. Salakhutdinov, and E. P. Xing. “Deep kernel learning”. In: Artificial
Intelligence and Statistics. 2016, pp. 370-378.

S. Liu and G. Trenkler. “Hadamard, Khatri-Rao, Kronecker and other matrix products”. In:
International Journal of Information and Systems Sciences 4.1 (2008), pp. 160-177.

GPy. GPy: A Gaussian process framework in python. http://github.com/SheffieldML/
GPy. since 2012.

Z. Yang, A.J. Smola, L. Song, and A. G. Wilson. “A la Carte — Learning Fast Kernels”. In:
Artificial Intelligence and Statistics. 2015, pp. 1098-1106.

J. J. Dongarra, J. Du Croz, S. Hammarling, and I. S. Duff. “A set of level 3 basic linear
algebra subprograms”. In: ACM Transactions on Mathematical Software (TOMS) 16.1 (1990),
pp. 1-17.

http://github.com/SheffieldML/GPy
http://github.com/SheffieldML/GPy

Supplementary Material
Fast Matrix-Vector Product Algorithm

In this section we describe how fast matrix-vector products can be made with INCX,X + 021, to enable
GP training and inference in O(dnp) time and with O(dn) storage. In section 2, we discussed
that this comes down to performing matrix-vector multiplication with a matrix that is a product of
row- and column- Khatri-Rao matrices, such as (KX,UQ)SZ. Algorithm mvKRrowcol describes how
this is done. The algorithm effectively computes the matrix row-by-row in the inner loop, however, it
can be easily modified to compute multiple rows simultaneously by considering j to be a vector of
indices whose length corresponds to the number of rows that are possible to fit in available memory.
This increases the size of the matrix operations considerably, thereby offering opportunities for
parallelization and the use of BLAS level-3 routines [17].

Algorithm mvKRrowcol Computes matrix-vector product RCb where R € R"*™, C € R™*P are
Khatri-Rao products of row- and column-partitioned matrices, respectively. Requires O(dnp) time if
we assume that one of R or C are dense and the other is sparse with one non-zero per row. Also, the
algorithm only requires O(n) additional memory. Note that o denotes the element-wise, Hadamard
product.

d .) - d)) _
Input: be R?, R = % RW e Rvxm R e Rm C = % C e Rmxp, ¢(0) ¢ Rmxp
. *

1=1 [

Output: f = RCb e R”
for j = 1tondo

t = R(l)(j, :)C(l)

fori: =2toddo _

t=toRY(j,:)Ct

end for

£(j) = tb
end for

Fast Computation of Kernel Correction

We discuss how the kernel correction term in eq. (4) can be efficiently implemented to enable GP
training and inference within O(dnp) time and with O(dn) storage. The resulting covariance matrix

from this corrected kernel (eq. (4)) simply adds a diagonal term to Kx x and so, it does not affect the
time for matrix-vector products, however, we need to show that this diagonal term can be computed
within the promised complexities.

Computing the diagonal correction term simply requires the diagonal of IN{X,X which we show how to
efficiently compute in algorithm rr_cov_diag in O(dnp) time. We can see that this is a modification
of algorithm mvKRrowcol where the inner loop multiplication only needs to consider the jth column
of C.

Since this diagonal correction is cheap to compute and leads to a non-degenerate GP, we find that it is
always worthwhile to consider.

Algorithm rr_cov_diag Computes the diagonal of the covariance matrix formed by the kernel
k (from eq. (1)); diag(Kxx) = diag(Kx,uQS, A, 'S,Q"Kyx) = diag((RC)TA, ' (RC)),
where we have denoted the row-partitioned Khatri-Rao product matrix R = S, € RP*™, and the

column-partitioned Khatri-Rao product matrix C = QTKUQ(€ R™*™ for notational convenience.
This computation requires O(dnp) time and only O(n) additional memory. Note that o denotes the
element-wise, Hadamard product.

d . . _
Input: R = x R e Rrxm R e RP*™,
=1

d . . __
C = % CYWeRm™" CW e R™ ", A e RPXP, diagonal.

i=1
Output: f = diag((RC)TA,'(RC)) e R"
f=0eR"
for j =1topdo

t = R(l)(j, :)C(l)

fori =2toddo 4

t =toRY(j,:)C®

end for

f=f+A,(j,5)(tot)
end for

	Approximate Kernel
	Inducing point Structure
	Experimental Studies
	Conclusion & Future Work

